# Semiconductor-Nanowire-Based Superconducting Qubit

First report

Advisor: Professor Kuei-Lin Chiu Reporter: Yung-Xiang Chen



2020/09/22

# Outline

- Principle of qubit
- Gatemon
- Property of gatemon
- Fig.2
  - Spectrum of gatemon
  - Coupling energy of gatemon
- Fig.3
  - "Vg-Qubit drive" diagram
  - Rabi oscillation
  - Z-rotation
- Fig.4
  - T1 & T2 measurement
  - Coherence time of gatemon
  - Hahn echo experiment

Improvement

### Qubit principle

- A form of LC oscillator.
- The inductor part is Josephson Junciton, a non-linear inductor.
- $I = I_C \sin \varphi$
- observe commute law
- correspondibg eigenenergy of system:

 $E_{\pm,n} = -\frac{1}{2}\hbar\omega_A + (n+1)\hbar\omega_C \pm 12\hbar\Omega_n$ where  $\Omega_n = \sqrt{4g^2(n+1) + \Delta^2}$  $\Delta = \omega_A - \omega_C$ 



### Gatemon

- SNS JJ's
- InAs at midle and AI is aside
- The total capacitance C is determined by T-shape Al island and surrounding Al ground plane
- The cavity is used for dispersive readout
- Cavity and qubit are patterned by wet etching Al film on an oxidised high resistively Si substrate





### Property of gatemon

- Schotty-barrier free SN interference
- The electron density of semiconductor core is controlled by electric gate,  $V_G$
- The transition frequency is given by  $f_Q = E_{01}/h = \sqrt{8E_JE_c}/h$
- Gatemon operate with  $E_j \gg E_C$

where charge energy 
$$E_C = e^2/2C_{\Sigma}$$

Fig.2,(a)&(b)

 $\sim$  Spectrum of gatemon

- The diagram shows that the function of  $V_G$  has a periodical fluctuation between the transition peaks.
- The periodical fluctuation has related to endoscopic fluctuation, which also can be found in normal-state conductor.
- This results  $f_Q \propto \sqrt{I_c(V_G)}$
- We can see as  $f_{Q}$  increasing, the  $f_{c}$  corresponding.



• The separate peaks indicate the strong coupling regime between the qubit and cavity.

### Fig.2,(c)&(d)

#### $\sim$ Coupleing energy of gatemon

• The coupling strength allow Rabi splitting to be resolved, writing the hybrid qubit-cavity state frequency as

$$\lambda_{\pm} = \left( f_{\mathcal{Q}} + f_{c} \pm \sqrt{\left( f_{\mathcal{Q}} - f_{c} \right)^{2} + 4(g/2\pi)^{2}} \right) / 2$$

- The qubit-cavity coupling strength,  $g/2\pi$ , is extracted from fitting the solid theory curve.
- We also can observe two lines avoid to engage.



### Fig.3,(a)

#### $\sim$ "Vg-Qubit drive" diagram

- When qubit drive was on resonance with  $f_Q$ , a peak in the cavity response was observed, yielding a reproducible gate voltage dependence.
- fig3b is measured by changing the qubit drive frequency and pluse time.
- which can also observe the Rabi oscillation.
- Those dynamic control is important for fast two qubit operator, especially when two qubit are coupling to each other.
- fig3c show operation of the Z-rotation
  - a. use  $R_X^{\pi/2}$  gate to rotate to  $\frac{1}{\sqrt{2}}$  (10> + 11>) (~15us)
  - b. excute the  $V_{G}$  pulse(time  $\tau$ , amplitude  $\Delta V_{G}$ )
  - c. excute  $\frac{R_{x}^{\pi/2}}{R_{x}}$  gate to rotate around x-axis(~15us)
  - d. observe the probability density



### Fig.3,(b)

#### $\sim$ Rabi oscillation

- When qubit drive was on resonance with  $f_Q$ , a peak in the cavity response was observed, yielding a reproducible gate voltage dependence.
- fig3b is measured by changing the qubit drive frequency and pluse time.
- which can also observe the Rabi oscillation.
- Those dynamic control is important for fast two qubit operator, especially when two qubit are coupling to each other.
- fig3c show operation of the Z-rotation
  - a. use  $R_X^{\pi/2}$  gate to rotate to  $\frac{1}{\sqrt{2}}$  (10> + 11>) (~15us)
  - b. excute the  $V_G$  pulse(time  $\tau$ , amplitude  $\Delta V_G$ )
  - c. excute  $\frac{R_{x}^{\pi/2}}{2}$  gate to rotate around x-axis(~15us)
  - d. observe the probability density



### Fig.3,(b)

#### $\sim$ Z-rotation

- When qubit drive was on resonance with  $f_Q$ , a peak in the cavity response was observed, yielding a reproducible gate voltage dependence.
- fig3b is measured by changing the qubit drive frequency and pluse time.
- which can also observe the Rabi oscillation.
- Those dynamic control is important for fast two qubit operator, especially when two qubit are coupling to each other.
- fig3c show operation of the Z-rotation
  - a. use  $R_X^{\pi/2}$  gate to rotate to  $\frac{1}{\sqrt{2}}$  (10 > + 11 >) (~15us)
  - b. excute the  $V_G$  pulse(time  $\tau$ , amplitude  $\Delta V_G$ )
  - c. excute  $\frac{R_{x}^{\pi/2}}{R_{x}}$  gate to rotate around x-axis(~15us)
  - d. observe the probability density



### Fig.4

#### $\sim$ T1 & T2 measurement

- T1 measurement:
  - a. Let qubit be excited to 11> ( $R_X^{\pi/2} \sim 30$  ns)
  - b. waiting for varying time  $\tau$
  - c. measure
  - d. eistimate by equation:

 $\square S(t) = S(0)\exp(t/T_1)$ 

- T2 measurement ~ Ramsey measurement
- Extra experiment : Hahn echo experiment



### Fig.4,

#### $\sim$ coherence time of gatemon

- Sample1(at b point,  $V_G$ =3.4V):
  - T<sub>1</sub> =0.56us
  - $T_2^* = 0.91$ us
- $T_2^* = 2T_1$
- The team think that the coherence was limited by energy relaxation time at this operating point
- Sample2(at c point, Vg=-11.3)
  - $T_1$  =0.83us(relative longer)
  - $T_2^*$  =0.73us(relative shorter)



### Fig.4,

#### $\sim$ Hahn echo experiment

- Hahn echo experiment ~ applying Hahn echo pulse sequence effectively reduced low frequency noise in  $f_Q$
- increase the dephasing time to T<sub>echo</sub> =0.95us, implied second device has great degree of low frequency noise in Ej(Vg)
- Techo doesn't reach  $2T_1$  indicate that higher frequency noise fluctuation faster than t also contribute to dephasing



### improvement

- removing the SiO2 dielectric layer
- better sample processing
- reduce the interface loss in the capacitor
- increase maganetic and infrared radiation shielding

## The end